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Abstract

With every non-zero spinor x there is associated a totally isotropic subspace N (x) of
the underlying vector space W; the subspace N (x) consists of all vectors annihilating
the spinor. The dimension v of N(x)—the nullity of x—is an invariant of the action
of the Clifford group and provides a coarse classification of spinors. According to
a terminology introduced by Cartan and Chevalley, a spinor is pure if the space
N(x) is maximal among totally isotropic subspaces of W. In this paper, we consider
‘partially pure’ spinors, i.e. Weyl (= semi-) spinors such that 0 < v < n, where 2n
is the dimension of the vector space W endowed with a neutral quadratic form. All
homogeneous polynomial invariants are shown to vanish on Weyl spinors of positive
nullity. We also show that there are no Weyl spinors of nullity v such that n -4 < v < n
or v = n— 5. We compute the dimensions of spaces of partially pure spinors and show
that, for n = 4 or > 5, generic spinors have nullity 0. The paper contains also a
heuristic introduction to the notion of pure spinors, comments about their geometrical
and physical significance and remarks on the history of the subject.
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1. Introduction and historical remarks
1.1. Notation and heuristic considerations

This paper 1s intended to be self-contained; for this reason we present, in
considerable detail, not only our notation and terminology, but also some of
the standard definitions and results in algebra, needed to prove the theorems
on partially pure spinors. Some of the well-known and important results are
formulated as Propositions, with references to the literature instead of proofs.
We use the label Theorem when we feel there is need for a proof, because
cither the result is new or no suitable reference is known to us.

1.1.1. Vector spaces and quadratic forms

There are two ‘natural’ quadratic forms, associated with vector spaces of
low dimension: the determinant and the Pfaffian; they lead to the ‘generic
isomorphisms among the classical groups and their Lie algebras [D.W2]. They
are also useful in describing spinors associated with such spaces.

If K is an Abelian group and O denotes its neutral clement, then K~ =
K \ {0}. In particular, if K is a field, then K is its multiplicative group.
Throughout this paper, B" denotes a finite-dimensional vector space over a
field K of characteristic # 2. Beginning with §2.6 we assume K = C. Let ™7
be the dual of W, i.e. the vector space of all K-linear maps from W to K. The
value of the 1-form w’ on w € W is often denoted by (w.w’). If 17 C W, then
I’e < W' is the vector space of all forms vanishing on all elements of . If
is a vector subspace of W, then 1"°° = I, If / is a non-degenerate quadratic
form on W', then the pair (M7 4) 1s said to be a quadratic space; there is the
associated isomorphism ¢ : W — 3”7 obtained by ‘polarization’ of 4, viz.

20wy, g(wna)) = h(w) + wy) —hGwey) = h(us). where  wy us € W(1)

It satisfies (w, g(w)) = h(w) and g (w,w2) = (wy, g(u)) is the scalar
product of the vectors w:; and w». If 7 € B, then V- is the vector subspace of
W consisting of all vectors orthogonal to all elements of . A vector subspace
- of W is said to be isorropic (null?) if / restricted to 1” is degenerate; it is
totally isotropic if h|V = 0. or, equivalently, if V' € '+, The index of h is the
dimension of maximal totally isotropic (/1i) subspaces of W. For 4 defined
on a space of dimension m = 2n or 2n + 1, the largest value of the index is

2 According to F. Klein (see Ch. 4 in [K]), the adjective isotropic was used by A. Ribaucour
(1845-1893) in the context of the geometry of C2: the vector (1, i) is ‘isotropic’ because a
rotation by the angle ¢ in the complex plane maps it into ¢ (1, i), a vector parallel to (1, i).
This observation does not generalize to higher dimensions; physicists often use the phrase “null
elements’, which, however, does not translate well into French and is not recognized by pure
mathematicians. Cartan [C1] used the expression ‘optical direction’. which seems appropriate.
but has not gained acceptance.
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n. A quadratic form of maximal index on an even-dimensional vector space is
said to be neutral. If f: V; — V, is a K-linear map of vector spaces, then the
transposed map ' f : V) — V| is defined by (f (v|), v4) = (v,, ' f (v})), where
v, € ¥} and v} € V,'. In particular, g is symmetric, 'g = g. We identify, in the
usual manner, V' with V.

1.1.2. The Grassmann algebra

Throughout this paper, by an algebra we mean an associative algebra with a
unit element, which is denoted by 1. A homomorphism of algebras is under-
stood to map one unit into another. We denote by AV the Grassmann algebra
of V. A linear map f : V| — V, extends to the homomorphism of algebras
Af @ AV, — AV,. The pairing V' x V' — K is extended to AV x AV’ —
K so that (v, A--- A, 0] Ao Awy) = det((v;,v))), where v, € V' and

i
vie V' for i,j = 1,....k and k = 1,...,dimV. ’jl"he Grassmann algebra
has two important involutive maps: the Z,-grading automorphism « such that
a(l) =1, a(v) = —v, forv € V, and the main antiautomorphism B such that
B(1) =1, B(v) = v;if x € A*V, then B(x) = (—1)*%*=D/2x The even and
odd subspaces of AV are denoted by AtV and A~ V, respectively, and there
is the decomposition

AV = ATV e AV, (2)

If x € AV, then e(x) : AV — AV is a linear map, the exterior product by x,
given by e(x)y = x Ay and c(x) : AV’ — AV’, the interior product by x (or
the contraction with x), is the map transposed with respect to e(f(x)), Le.
(y,c(x)z') = (B(x) Ay, z'), for every y € AV and z’ € AV In particular,

e(v) = c(v) forevery velV. (3)
The easy-to-check formulae
Pfoe(v) =e(w)oaof and Poc(v) = —c(V)oaof

are useful in computations. The maps ¢(z’) and ¢(z’) are similarly defined. If
v’ € V’, then c(v’) is an anti-derivation, of degree —1, of the Z-graded algebra
AV and

e(w)oc(v') +c(w)oe(v) = (v,v)iday

for every v e V.

1.1.3. Hodge duality
If the vector space V' is n-dimensional, then a volume element ¢ on V' is a
non-zero n-form, ¢ € A"V’'. We define the (modified®) Hodge isomorphism

3 The modification, which consists in using, in formula (5), the expression B{(x) A ¥ instead
of x Ay, is in agreement with the Kahler definition of the Hodge dual in terms of Clifford
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relative to e,

e:NV — AV, by e(x) =c(x)e, (4)
1.e.

(B(x)Ay.e) = {(r,e(x)) forevery x,yeAV. (5)

The abuse of notation implied by (4) is justified by ¢(1) = ¢. From f(¢) =
(—=1)"n=D/2¢ and (B(x), B(x")) = (x.x’) one obtains

e = (—1)n=D2g, (6)

Moreover, the definitions imply

coe(v) =c(v)oe and coc(v') =e(v')oe (7)
for every v € V and v’ € V' If (u,,...,u,) is a linear basis in a vector
subspace U of V. then ¢(u, A--- Au, ) is of the form “lk+1 A -+ Auy, where
wieV', i=k+1...., nand U° = span{u; |,....u,}.

If n = 2p , then there is the bilinear map
ANV x APV — K, (x,1) — (x, (1)), (8)

which is symmetric or skew, depending on whether p is even or odd.

1.1.4. Low-dimensional examples

We denote by End (S) the algebra of all K-linear endomorphisms of a
finite-dimensional vector space S. If x € S and x’' ¢ §’, then there is the
endomorphism x © x’ such that

(x2x) () = {y.x)x forevery yes.
Clearly, Tr (x ® x') = (x,x"), "'(x 2 X') = X' @ x and
uo (x2x)You = ulx) 2 (x') (9)

forevery x € S, x’ ¢ &, and u,v € End (S).

Consider now a rwo-dimensional vector space S over K, with a volume
element ¢ and the associated four-dimensional vector space W = End (S).
The quadratic form

h =det:End(S) — K
defined by
w(x)Aw(y) = (detw)x Ay, where x,yeS and weW, (10)

multiplication by the volume element [BT1.RoT2]; see aiso (23). It leads to the simple formula
(6) for the transpose of e.
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is non-singular; from (5) and (10), by evaluating ‘w o ¢ ow on x and y, one
obtains (y,'woeow(x)) = (w(x) Aw(y), &) = (y,e(x))detw, or

w ow = (detw)ids, (11)

where w’ = ¢7! ofw o¢|S is also an element of W. The four-dimensional
vector space of Dirac spinors, associated with W, is the direct sum, R = S& .5,
of two copies of spaces of Weyl spinors. Let

y(w): R — R be defined by ?(71’):(13’1(1)))’

then (11) gives
7(w)? = h(w)idg. (12)

The endomorphisms jy(w), where w € W, generate the algebra End (S & §),
which, in this context, is the Clifford algebra of (End (S),det) over K. From
now on, to the end of this paragraph, we write z = (x,y) € S .S and identify
x with (x,0) and y with (0,y). By virtue of (12), the set

N(z)={weW:y(w)z =0}, where ze€R*,

is a totally isotropic subspace of W. Moreover, N(x,y) = N(x)nNN(y). If
x # 0, then N(x) is maximal among totally isotropic subspaces of W: it is,
indeed, two-dimensional because it can be identified with x ® §’. Similarly, if
y # 0, then N(y) = S®&(y). Therefore, if both x and y are non-zero, then
N(x)NN(y) = Kx®e(y) is one-dimensional.

Consider next a four-dimensional space S over K, with a volume element
g € A*S’. According to (8), the six-dimensional vector space W = A2S has a
quadratic form defined by the Pfaffian, # = Pf,

Pf(w) = J{w Aw,e), where we W.

Since now W < Hom (S§’,S) and W' C Hom (S, S’), there is a composition
map, W x W’ — End (§), such that, for every x,,x, € S and x{, x; € ', there
holds

(x; Axy) o (x] A Xy)
= X, ® X1 {x2.X3) + X3 ® X3(X;, X1) = X @ X3{xp, X7) — %, @ X( (X, X3).

There is a similar composition map with W, W’ and S replaced by W’ , W and
S’, respectively. For every w € W one has

woelw) = h(w)ids and e(w)ow = h(w)idg.
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Defining now the space of Dirac spinors as R = S = 5 and

0 w
rlw) = (a(u') O)'

one sees that Eq. (12) holds again and End (S 4 .5") is the Clifford algebra of
(AS.Pf). Putting = = (x.3') € S+ .5 and making similar identifications to
those of the preceding paragraph. one obtains that, for x € S*.

Nix)y={weW wax =0}

is a three-dimensional totally isotropic space. consisting of all bivectors of the
form x Ay, where 11 ¢ S. Similarly, if X € §%, then

N(X) = {we W wx') =0}

is three-dimensional totally isotropic, and can be identified with A2x"°. There-
fore. if both x and x’ are # 0, then

N(x)AN(Y) = {{O} it (x.x')V#0

Kx Ax® is 2-dimensional if (x.x") = 0.

The above construction, used in twistor theory [PeR]. prolongs to a seven-
dimensional vector space ' = W & Ke¢,, where W = A’S and the quadratic
form on U extends the Pfaffian and makes the unit vector ¢; orthogonal to
W. One represents ¢; in R = .5 = .5’ by the endomorphism

y(er) = (é ~01 )

If z=(x,x")# 0and v = w + /¢7, then
N(iE)={uelU :wxX)+ix =0 and e(w)(x) - ix" =0}

1s totally isotropic and maximal (i.e. three-dimensional) if, and only if,
(x,x"y = 0; otherwise, N(z) reduces to the zero vector. Seven is the least
dimension of a vector space, with a quadratic form of maximal index, which
admits spinors of the latter type: for m = 3 and 5 every spinor and for
m = 2,4 and 6 every Weyl spinor x is pure: its nullity—the dimension of
N (x)—is equal to the index of the quadratic form.

1.2. Historical remarks

There is a ‘prehistory’ of spinors: the germs of the ideas of spin groups
and their representations can be found in the work of L. Euler, O. Rodrigues,
W.R. Hamilton, A. Cayley, W.K. Clifford and R.O. Lipschitz, see [BTI1,T]
for references and further remarks on this subject. Elie Cartan [C1] discov-
ered what are now called spinor representations of the complex Lie algebras
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so(n), n > 2. Spinors owe their name and fame to physicists. According to
B.L. van der Waerden [W3], the name spinor is due to P. Ehrenfest, who
suggested, on a visit to Gottingen, to develop a spinor analysis analogous to
tensor calculus [W1]. During the first 15 years that followed the discovery of
the spin of the electron, important work on spinors was done by Pauli, Dirac,
Weyl, Fock, Bargmann, Schrédinger, Majorana, Laporte and Uhlenbeck, Infeld
and van der Waerden, Haantjes and Schouten, and several other authors; a
good source of references to that period is [Co]. The connections between
spinors, totally isotropic spaces and projective geometry seem to have been
clearly stated, for the first time, by O. Veblen [V1,V2] and developed in
seminar lectures at Princeton given jointly with J.W. Givens [VG]. The latter
prepared a Ph.D. thesis [G], which, in a section on the Geometry of a gener-
alization of the Pliicker-Klein correspondence, contains remarks that may have
influenced E. Cartan in his work on pure? spinors; by some accident, Ref. [G]
appears in the French original [C3], but not in the English translation [C4]
of Lécons sur la theorie des spineurs. At about the same time, Brauer and Weyl
[BrWe] gave a description of the representations of the groups Spin,,; they
made clear the role of the Clifford algebras in their construction and found the
decompositions of the tensor products of the representations into irreducible
parts.

Cartan’s Lectures [C3,C4] contain an exposition of the notion of a pure
spinor and are rich in geometrical ideas; some of the proofs there are out-
lined only and the underlying field is restricted to be either C or R. These
shortcomings have been overcome by C. Chevalley, who based his Algebraic
theory of spinors [Ch] on the notion of minimal, one-sided ideals of Clifford
algebras, an idea considered carlier by M. Riesz [Ri] in the context of the
Dirac equation in the theory of general relativity and, less explicitly, by several
physicists; see [S] and the references given there. Very early, spinor fields were
introduced, in a ‘local’ manner, on Lorentzian manifolds of Einstein’s theory.
For a considerable length of time, the lack of a global definition, needed in
the context of manifolds with non-trivial topology, and the subtle differences
between tensors and spinors, baffled mathematicians and physicists alike; com-
pare, e.g., an opinion expressed in 1928 by C.G. Darwin (quoted in [BT1, p.
41), the footnotes at the end of [C3], the discussions on the Lie derivatives of
spinors or a paper that appeared in an early volume of this Journal [Mo]. The
proper definition, intimated by Cartan, has been given, in the 1950s, in terms
of fibre bundles; see [LM] for a presentation of the notion of a spin structure
and of the applications to geometry of global properties of the Dirac operator.
This book is also a good guide to the ‘modern’ period of the work on Clifford

4 In fact, Cartan used the expression spineur simple, the name ‘pure spinor’ is due to Chevalley
and seems to have been generally accepted even though it is somewhat disturbing to think of
Dirac spinors as being ‘impure’, cf, [BT2].
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algebras and their representations, on the index theorem in the context of spin
structures, on spin cobordism and on harmonic spinors.

The projective-geometrical and “optical’ aspects of spinors, introduced by
Veblen and Cartan, have led to important applications in the theory of general
relativity and Yang-Mills theory, mainly through the work of Roger Penrose
and his school, and the development of his twistor theory [A,PeR].

1.3. A short remark on applications of pure spinors in physics

In this paper, we consider the problem of classifying Weyl spinors according
to their nullity. The main results are summarized in the theorems in Section 3.
Most of the time, we restrict ourselves here to the field of complex numbers.
but important applications of pure spinors are associated with real structures
[BeTu,KoT,PeR] . Put very briefly, they rely on the following [NuT,T]: If W
is the complexification of a real space V' with a scalar product of signature
(2p +0.2g + 6), where 6 = Oor | and p + g + & = n, then the real index
of a pure spinor x # 0, r = dim(N(x) N N(x)), in the generic case equals
d. Therefore, the direction of a pure spinor in a general position defines in I
a complex (6 = 0) or an optical (6 = 1) structure. These observations can
be applied to a smooth, orientable 2n-dimensional spin manifold M with a
bundle of directions of generic pure spinors. A section of this bundle—if it
exists—defines an almost complex or an almost optical geometry, depending
on whether » = 0 or 1. With such a section one associates a bundle A of
maximal, totally isotropic subspaces of the complexified tangent spaces to
M. Denoting by Z the module of sections of the bundle A, one considers the
integrability conditions [Z, Z] € Z. In the pseudo-Euclidean case (6 = 0), the
condition is equivalent to the vanishing of the Nijenhuis tensor of the almost
complex structure; in the Lorentzian, four-dimensional case, it i1s related to
the geodetic, shear-free properties of the trajectories of the real line bundle
Re (MNA) — M. In the theory of general relativity, congruences of shear-free
isotropic geodesics play an important role in the study of algebraically special
gravitational fields; see [PeR,RoT1] and the references given there.

2. Grassmannians, Clifford algebras and groups

With a vector space W over K one associates the kth Grassmannian Grf(w)
of all k-dimensional vector subspaces (k-planes) of W and the toral Grassman-
nian Gr(W) = J, Gr* (W). The general linear group GL(HW") acts transitively
on each Grk(W). In particular, Grl(w) = P(1) is the projective space asso-
ciated with W. There is a canonical map dir: W>* — P(J").
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2.1. The Witt theorem and quadric Grassmannians

The isotropic cone in a quadratic space (W, h) is the set Wippe = {w € W
h(w) = 0} and the kth quadric Grassmannian Q* (W, h) c Gr* (W) is defined
as the set of all totally isotropic k-planes in W [Pr]. In particular, Q' (W, 1) C
P (W) is the quadric and the map dir restricts to Weope \ {0} — Q' (W, h). The
total quadric Grassmannian is Q(W,h) = J, Q“(W, h).

Proposition 1 (Witt). Let W be a 2n-dimensional vector space over K with a
neutral quadratic form h. Then

(1) the group O (W, h) of orthogonal automorphisms of (W, h) acts transitively
on each quadric Grassmannian QK (W, h), k =1,...,n;

(ii) if T is a maximal totally isotropic (mti) subspace of W, with a linear basis
(t1,...,tn), then there exists another mti subspace U of W, with a linear basis
(uy,...,u,) such that W =TeaU andg"(li,uj) =4 fori,j=1,...,n

(iii) if Ty is a subspace of T, then there is a subspace U, of U such that
h|\Ty ® U, is non-degenerate.

Proof. Can be found in [Bour, §4, no. 2 and 3].

Lemma 1. (i) Every totally isotropic subspace V in a vector space W with
a neutral quadratic form can be represented as an intersection of two mti
subspaces of W.

(ii) If T, and T, are two totally isotropic subspaces of W and T, ¢ T\, then
there exists an mti subspace U C W such that Ty C U, but T, ¢ U.

Proof. The first statement can be proved directly by using the Witt decompo-
sition and basis. Assuming that W is 2n-dimensional and using the notation of
part (ii) of Proposition 1, one can represent a k-dimensional totally isotropic
space as

span{fy,..., 4} = span{f(,...,th} Nspan{iy, ... e, Uy 1., Uy}

The second follows from the first: let 7; = V, N U;, where }J, and U, i = 1,2,
are mii spaces. Since T, ¢ T), at least one of the following is true: 75 ¢ V| or
T, ¢ U,. O

2.2. Clifford algebras
The following two statements are classical; see, e.g., [Bour].

Proposition 2. Let T (W) be the tensor algebra of a vector space W over K and
let T(h) be the bilateral ideal of T (W) generated by all elements of the form
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w & w —h(w).l, where h is a quadratic form on W. The Clifford algebra of
the quadratic space (W.h),

CUff (W, h) = T(W)/T(h)

is an algebra over K, containing W as a vector subspace. and having the
universal property: iff A is an algebra over K and f : W — A is a Clifford map.
i.e. a linear map such that f(w)? = h(w).l for every w € W, then there is
a homomorphism £ CHff (W, h) — A of algebras extending f. i.e. such that

The Clifford map w — —w extends to the Z,-grading automorphism «y
of CILiff (W, h); the canonical injection of W into the algebra opposite to
CLiff (W, h) gives rise, in a similar manner, to the main antiautomorphism B,
The even subalgebra is

Clff* (W.h) = {a € Cliff (W, h) : ay(a) = a).

Proposition 3. There is an isomorphism of vector spaces

1 Clft (W ohy — AW (13)
obtained by extending the Clifford map

W —End AW, [(w) =c(uw) +c(glw)),

to the homomorphism f : Cliff( W.h) — End AW and evaluating it on the unit
element 1 of A\W, 1{a) = f(a)l. Moreover 1 is the identity map on K = W,

{wa) = e(w)i(a) + clgw))(a), (14)
for every w € W and a € ClLiff (W, h),

H{uv —vu) = 21(u) ANi(e)  for we e W
and

loap =«ol. lofiy = fol
2.3. The Clifford group

Let u € W be a non-isotropic vector: the map
w— plu)w = —wwu (15)

of W into itself, is a reflection in the hyperplane orthogonal to . The multi-
plication on the right side of (15) is in Cliff(W. /) and ="' = i (u)~'u. The
same map, expressed in terms appropriate to the Grassmann algebra, reads
w — o(u)uw, where
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o(u) =h(u) "e(u) + c(gu)) o (e(u) —c(g(u))
=idy — 2h(u)"re(u) o c(g(u)). (16)

The latter map extends to the automorphism Ag (1) of the Grassmann algebra.

The Clifford group G(W, h) is defined as the subset of Cliff (W, /) consisting
of the products of elements of all finite sequences of non-isotropic vectors;
multiplication in the group is induced by that in the algebra. If a € G(W, h),
then u(a) = fyla)a € K* is the norm of a. With p defined by

pla)w = ala)wa™’ (17)
one has the exact sequence of group homomorphisms
1 = K* = GW,h) L 0W,h) — 1.

Fora = u,...u, € G(W,h) one puts g(a) = o(u;)o-- oo (u,); this defines
a representation of the Clifford group in AJW. The even Clifford group is

G (W, h) = G(W, h) nCliff* (W, h).
and one has

t(aba™') = Nag(a)o1(b) (18)
for every a €e Gt (W, h) and b € ClLiff (W h).

2.4. The hyperbolic model of neutral spaces

It is convenient to have a ‘universal’ model of vector spaces with a neutral
quadratic form; such a ‘hyperbolic’ model and the corresponding Clifford
algebra, are described in the following Proposition.

Proposition 4. Let V' be an n-dimensional vector space and let W = V @ V' be
given the canonical, neutral quadratic form h,

hv +0") = (v,v")
for everv v e V and v' € V'. There is an isomorphism of algebras
y . Cliff (W, h) — End AV (19)

obtained by extending the Clifford map V &V’ — End AV such that v + v’ —
e(v) + c(v'). For every a € CLift (W, h) one has

"y(Bala)) = eoy(a)oe™l. (20)

Proof This is also well-known (see, e.g., [Ba]): both V' and V' are muti
spaces and (20) is a consequence of (3) and (7). One says that (19) is a
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representation of the Clifford algebra of a neutral quadratic space in the space
R = AV of Dirac spinors. This representation is faithful and irreducible.

The dual W’ of W = IV I/ can be identified with the space W itself, the
pairing being defined by
(0 + v].vy + o)) = H(op0h) 4 eael) for ee i wlel i= 12,

The isomorphism g, associated with /# by (1), reduces now to the identity. Let

(v)).i=1...., 1. be a linear basis in }7

and (v]) the associated dual basis in 7. (21)

The volume element

n= (1);7"1 - ’1?1'17;) e (”)/11"11 - ['H’“I/Z)

satisfies

=1 and 1(n) = 2" AU A AULAT,

‘n

Moreover, since ;' (vjv,—vv))v; = v, for i # jand —uv; for i = j, one sees that,
defining the helicity automorphism by I' = 7 (), one has I'(x) = (—=1)2x,
where y(x) = 0 or 1 for x € A*YV or A™V, respectively. In this context,
one says that (2) is the decomposition of the space of Dirac spinors into two
spaces of Weyl spinors of positive and negative helicities. Denoting by S the
space of Weyl spinors of positive helicity, one obtains, by restriction of (19),
the representation of the even subalgebra.

w: Clifft (W, h) — End (S). where S = AT, (22)
The Kdhler dual of an element of AW is defined by

«1(a) =1(na) for ae CUff (W h) (23)
so that
s =1d and Pox = (—1)"xofocq. (24)

2.5. The bilinear equivariant map

Let (W, h) be the quadratic space described in Prop. 4. The representation
(19) and the isomorphism (13) define an isomorphism of vector spaces

K =107 L AV R AV — AV 217),

which is different from the canonical, linear isomorphism among these spaces
obtained by extending the map x 2 )’ — x Ay, where x € AV and y' € AV".
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For example, if (x,), where 4 = 1,...,2", is a linear basis in AV and (x/,)
is the corresponding dual basis in AV’, then k(3 ,x, ® x/;) = l,w. With a
pair (x,y) of spinors we associate the multivector

E(x,y) =x(x®¢e(y)), x,yeAV, (25)

and denote by Ei(x,y) the component of E(x,y) in A*W. We define the
‘quadratic covariant’ associated with a spinor x € AV by F(x) = E(x,x)
and put Fr(x) = E;(x,x).

Theorem 1. The bilinear map E : ANV x ANV — AW defined by (25) has the
Jollowing properties holding for every x,y € AV, ae G* (W, h) and w € W:
(1) it is equivariant with respect to the action of G¥ (W, h),

E(y(a)x,y(a)y) = ula).No(a) o E(x,y);

(i) E(y(w)x,y) = (e(w) + c(g(w)) o E(x,y),
(iii) E(y,x) = (=1)*""=D28 0 E(x,y);

(iv) E(I'x,y) = xE(x,y),

) E(x,I'y) = (-1)'aoc E(I'x,y);

(vi) if x and y are Weyl spinors, then

X(xX)+x() +k—n=1mod?2 implies E;(x,y) = 0;

(vii) if x is a Weyl spinor, then F, (x) = 0 unless k = n mod 4.

Proof.
(1) From the definition of E and (9), one has

E(y(a)x,y(@)y) = 1(ay ™ (x 2 e(y))Br(a))

and the result follows from (18).
(i1) This 1s a consequence of (9) and (14).
(iii) Usey@e(x) =¢elol(x®e(y))ole, (6) and (20).
(iv) Follows at once from (23).
(v) Follows from (ii1), (iv) and (24).
(vi) Assuming that x and y are Weyl, from (iv) and (v) one obtains

E(x,y) =Ex,IT?) = (-1)"ao E(I'x;T'y)
= (—I)X("‘)”U’H”aoE(x,y).

(vii) Note that (ii1) can be written as
E (y,x) = (=) RU+k=DRE, (x y)

and §(n—k)(n+k—-1) =1 mod 2 fork—n =2 mod 4;if k—n = 1 mod 2,
then Fj, (x) vanishes by virtue of (vi). O
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Note that if x 1s a Weyl spinor of nullity v, N{x) = span{w,,...,uw,}. say.
then there exists @ € AW such that

F(x)=w, A ANw, AND.
2.6. The Cartan-Chevalleyv theory of pure spinors

From now on, through the end of the paper, we restrict oursclves to complex >
vector spaces of even dimension /7 = 2n > 0 and consider Clifford algebras.
spin groups and spinors associated with such spaces. The ground field being
fixed, we use a notation emphasizing only the dimension of the underlying
space. Thus the Clifford algebra of the quadratic space (C”.h). with /i non-
degenerate, is denoted by Cliff,, and G,, is the corresponding Clifford group.
GL,, is the general linear group. etc. The Pin and Spin groups are defined by

Ping, = {a € Gy 1 ula) = 1}
and
Spin,, = Pin,, N Cliff}},

respectively. We write QX instead of QX (C*". /1),

Elie Cartan's theory of pure spinors can be summarized as follows. Let
(t;.....1,) be a linear basis in an mti subspace T of H" = "= I/, Since the
representation (19) is faithful, there exists a spinor - € R = Al” such that v =
v(t;---1,Yz # 0. The spinor v is pure, N(x) = 7. For example, N(1) = "',
If v is another spinor such that N (1') = 7, then there is 2 € C* such that y =
/x. Therefore, there is a bijective correspondence between the set of directions
of pure spinors and the quadric Grassmannian Q. a complex manifold of
dimension %n(n —1). For every v € R and a € Pin,, one has N(y(a4)x) =
p(a)N(x). Every pure spinor x is a Weyl spinor, I'(v) = (~1)*"x; if
N(x) = span{r..... tp}. then x (1 A Aty) = (=1)X Ao A g, There
is a bijective correspondence between the set of directions of pure spinors
of positive helicity and the manifold Q%+ of self-dual (one also says: of
positive helicity) m1ti subspaces in W’. This manifold is one of two connected
components of Q”. The groups O, and SO,, act transitively on the spaces of
directions of all pure spinors and pure spinors of a given helicity. respectively.
Less obvious are the following facts.

Proposition 5 (Cartan—Chevalley). (i) A Weyl spinor x # 0 associated with
W = C* is pure if. and only if. Fi(x) = 0 for k # n;

> This assumption is not essential: all the following considerations can be formulated so as to
be valid over a field of characteristic # 2. We prefer, however, to confine ourselves to complex
geometry and use the concept of a manifold, more familiar to physicists than the algebraic
geomecters’ notion of varieties.
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(ii) if x and y are pure spinors, then the dimension of N(x)YN N(y) is the
least integer k such that Ex(x,y) # 0; moreover Ex (x,y) = v, A---Avy, where
the vectors v,...,v, are such that N(x) N N(y) = span{v,,...,v,} and one
has y (x) + x(v) + k —n=0mod 2;

(iii) if x and y are linearly independent pure spinors, then x + y Is pure if,
and only if, dim(N(x) N N(v)) = n — 2; if this condition is satisfied, then
Nx+)NNu)=NKX)NN©).

Proof. One finds it in [C3,Ch,BeTu].
2.7. Orbits of the Spin groups in low dimensions

A considerable amount of work has been done on the classification of the
orbits of the Spin groups associated with low-dimensional spaces; essentially
everything is known up to dimension 14 [Ig,Pp]. For our purposes it is enough
to summarize the results for even dimensions < 12.

By restricting (22) to Spin,, C Cliff5,, one obtains the Weyl representation
of the group in the 2"~ !-dimensional space S of spinors of positive helicity,

y : Spin,, — GL(S), S =A%V, V =C" (26)

Proposition 6. Consider the action of the group Spin,, in the space S* of
non-zero Weyl spinors, defined by the representation (26). Then

(i) For n = 1,2 and 3, the action is transitive.

(ii) If n = 4, then, for every A € C, there is a T-dimensional orbit {x € S* :
Fo(x) = A} and dim N (x) = 4 or 0 depending on whether . = 0 or A £ 0.

(iii) For n = 5 there are two orbits: that of pure spinors, characterized by
Fi(x) = 0 and the orbit of spinors of nullity 1, if Fi(x) # 0, then N(x) =
C F] (X )

(iv) For n = 6 there is the Igusa invariant J(x) defined by

*J(x) = *xF(x) A Fy(x).

For every A € C* there is one orbit {x € S: J(x) = A} of dimension 31. Besides
those, there are three orbits on which the invariant vanishes:

(a) the 16-dimensional orbit of pure spinors, characterized by F>(x) = 0;

(b) the 25-dimensional orbit of spinors of nullity 2, characterized by F> (x) #
0and F>(x)ANF(x) =0;

(c) a 31-dimensional orbit of spinors of zero nullity, characterized by I (x) A
F(x) # 0.

Proof. (i) This is well-known: the groups Spin, = GL,, Spin, = SL, x SL,
and Sping = SL4 act transitively on their respective spaces of non-zero Weyl
spinors. (ii) This is a well-known manifestation of triality. (iv) and (v) follow,
respectively, from Propositions 2 and 3 in [Ig].
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3. Partially pure spinors

We continue using the notation introduced in §2.4 and §2.6. In particular,
R = AV and § = ATV are the spaces of Dirac and of Weyl spinors of
positive helicity, respectively, associated with the 2n-dimensional vector space
W =Vl

Lemma 1 can be completed by the following
Lemma 2. (i) If T € Q!~!, then there exist exactly two mti subspaces T\ and
Ty containing T, thev are of opposite helicity.

(it) If T € QK. where k < n —2, then T can be represented as an intersection
of either two or three mti subspaces of positive helicity, depending on whether
n—k is even or odd.

Proof. (i) Decompose W into a direct sum | & W5 of orthogonal subspaces
such that 4| W} (i = 1,2) is non-degenerate and 7 C W. Then dim 5 = 2 and
Wieone = LiULy withdim L, = dim L, = 1. The subspaces T; = W\ &L, (i =
1.2) are mti and of opposite helicities because one of them can be transformed
onto the other by an isometry of ¥ which reduces to the identity on ¥} and
is a reflection on W5, interchanging L, and L,.

(i1) This can be proved along lines similar to the proof of (i), or, by adapting
a basis (21) to 7 and giving an explicit construction of the intersecting mifis.
For example, if n is even and & is odd, then

span{v,...., v, b =span{v,..... v, Nspan{w,, ..., TP LT L1 P T
1 IS 1 n 1 Ko Vh4+1s V42 n

a1 N gt N N
OSpan{?y, ... 0 U s Uy 12 Uk ane e - - tnl

Theorem 2. Consider the maps:
v :Q(W.h) — Gr(R) and ¢ : Q(W. h) — Gr(S8)
defined, respectively, by
w(T)y={xeR:y()x =0 forevery teT} and ¢(T) = w(T)NS.

(1) The map w is injective.

(it) The map ¢ restricted 1o | J;._; QX (W, h) is injective.

(iii)) If T € Qﬁ‘k, where k = 1,...,n, then dimg(T) = 2='. Moreover, if
T C V', then the dual U' of U = T+nV can be identified with a subspace of
V' complementary to T. The restriction of h to U = U' € W [s non-degenerate.
By restriction, (26) gives a representation of the group Spin,, C Spin,, in a
space of Weyl spinors N™U = @ (T). Defining

Ne(x)={welU=z2U :y(w)x =0}, vy = dim N (v),
for x e (NTU)™,
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one has

n——l/:k—l/u. (27)

Proof. (1) Let T, T, and U be as in part (ii) of Lemma 1. A pure spinor
x € w(U) belongs to w(T,), but not to w(7T,). This proves the implication
T # T, = y(T)) # w(Ty).

(i1) This is proved similarly, using now part (ii) of Lemma 2.

(it1) Using the notation of Prop. 4 and assuming 7 Cc V', T ¢ QZ"‘, one can
take T = span{1;,’(+1,...,1)j,}. This being so, U = T+ NV = span{v,,...,v;}
and U’ can be identified with span{v{,...,v;} so that #|U & U’ is indeed non-
degenerate. Since y(f)x = ¢(t)x for t € ¥/, one obtains that ¢ (7T) = ATU is
a 2¥~!.dimensional carrier space of a Weyl representation of Spin,,. Finally,
if x e (ANTU)*, then N(x) = Ny (x) @ T, which proves (27}. O

Note that if one applies the definition of the map ¢ to totally isotropic (n—1)-
planes, such as 7} = span{v},v3,v},...,v,} and T> = span{v}, v}, vs, ..., v},
then one obtains ¢ (7}) = ¢(7,) = C, even though 7| # T>.

3.1. The Invariants

We introduce now a simplified notation: we write ax instead of y{(a)x and
if 4 c Cliff,, and x € S, then

Ax ={axeS:aec 4}.

Theorem 3. The following three conditions on the spinor x are equivalent:

(i) the nullity v of x is positive;

(ii) 0 is in the closure of the set Wyninx, where Wy = W N Piny, is the set of
unit vectors;

(1ii) the set Wynwx is not closed in S.

Proof. To prove (iii)= (i), consider the linear map f : W — § given by
f(w) = wx. Its kernel is N(x). If v = 0, then f is injective and the image
by f of the closed subset W, of W is closed in S. The implication (ii)=(iii)
is obvious because 0 ¢ Wy,;x. Finally, to prove (i)=(ii), let v > 0 so that
there i1s ¥ € N (x)* and one can find a vector v € Wy such that uv + vu = 1.
One then has, for every s € R*, g(s) € Wy, where ¢ (s) = eSu + e~*v so that
g(s)x = e~ ‘vx. The set g(R*)x contains 0 in its closure.

Corollary 1. The set of all spinors of positive nullity is contained in the set of
all spinors x such that 0 is in the closure of Spin,, x.
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Indeed, if the nullity of x is positive, then 0 is in the closure of (Pin, N W )x
and. a fortiori. in the closure of the larger set (Pin,, \ Spin,,)x = w.Spin,,x.
where w € Wy, The map § — S. given by x — wx, is a homeomorphism
preserving the origin; if O belongs to the closure of .Spin,, v, then it also
belongs to the closure of Spin,,.x.

A continuous function J : S — C is an /nvariant of the action of the group
Spin,, if, for every x € S and a € Spin,,, one has J(ax) = J{(x). For example,
the scalar component F; of the quadratic covariant F defined in §2.5 is an
invariant.

Corollary 2. If x is a spinor of positive nullity and J is an invariant, then
J(x) = J(0).

Proof. This is a direct consequence of the preceding corollary. Explicitly, in
the notation of the proof of Theorem 3, the map ¢ : R — Spin,,, given by

g(s) = q(s)(u + v) = coshs + (uvr — vu)sinhs, defines a one-parameter
subgroup of Spin,, and g(s)x = ¢’x — 0 as s — —x.
In particular, all the invariants formed from F.(x). k = 0..... 2m, by ho-

mogeneous tensor operations (products and contractions) vanish on spinors
x of positive nullity. There is no converse to Corollary 2: the Igusa invari-
ant, which generates the algebra of invariants of the Weyl representation of
Spin,;,, vanishes on the orbit of spinors of nullity 0, described in part (iv.c)
of Proposition 6.

3.2. The Lacunae

We are now ready to answer the following simple question: what are the
possible values of the nullity of a Weyl spinor ? As a preliminary we have the
following

Lemma 3. Let T ¢ QX, where k < n. The manifold
X ={UeQktl:TcU}
has dimension 2(n — k — 1).

Proof. Since T C T+, one can find a space 7} complementary to 7 in T+,
Because of & < n, one has 7} & Wne and the intersection 7) N Wione \ {0} 15
hypersurface in 7' defined by the polynomial equation 4 (w) = 0,w € T*. To
specify U appearing in the definition of X, it is enough to give the direction,
dir w, of a vector w € T| N Wegpe. Therefore, the manifold X can be identified
with P(77) N QL. Since 77 has dimension 2(n — k), the manifold X is of
dimension 2(n — k — 1). O
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To keep track of the dimensions, let us now denote by S, = (A+TC")* the
space of non-zero Weyl spinors, of positive helicity, associated with the vector
space W = C?". We define

Sk={xeS,:dimN(x) >k}, k=0,1,....,n+ 1,
so that S7+! = @ and
Ik = Sk\SkH! k=0,1,...,n,

so that S7 is the space of pure spinors, ¥ is the space of spinors of nullity k
and

Stcsrlc...c8=5,.

It is clear that, for every a € Spin,,, one has aX*¥ = ¥% ie. 2% is a union of
orbits of the group Spin,,. The set X¥ is either empty or open and dense in
Sk. More precisely, we have

Theorem 4. The set X", where n —k >0 and n = 1,2,..., is empty if, and
only if k =1,2,3 or 5.

Proof. If x € SI~%, then there is 7 € Q%% such that x € ¢(T). Without
loss of generality, one can take 7" 1o be as in the proof of Theorem 2. Since,
for k = 1,2 and 3, every Weyl spinor x associated with the group Spin,;
is pure, one has, for these values of k, vy = k and (27) gives v = n: the
same spinor x, considered relative to Spin,, is also pure. This proves S7—3 =
Sn=2 = §7=1 = S7. To show S/~* £ S,” for n > 4, consider, in the notation
of the proof of Theorem 2, the pure spinors x = 1 and y = v; Av, Avy Ay,
Since N(x) N N(y) = span{vi,...,v;,} is (n — 4)-dimensional, on the basis
of part (iii) of Prop. 5 one concludes that the spinor x + y is not pure; its
nullity is #» — 4. Let now x € $*5 and T € Q}~> be such that x € ¢(T).
According to part (iii) of Prop. 6, either x is pure—and it then belongs to
S7 by a an argument similar to the previous one—or its nullity is 1. In the
latter case, Eq. (27) gives v = n — 4. This proves S*=> = S7”~*. Finally, to
show that X% is non-empty for n — k > 5, consider 7 € QX, k < n. Let X
be the manifold defined in Lemma 3, and let ¥ — X be the vector bundle
Y = {(x,U) :x € ¢(U), U € X}. There is a tautological surjective map
Y — Sk+lng(T), if S& = Sk+1, then the map ¥ — SKkno(T) = o(T) is
also surjective and, therefore, dim Y = dim X +dim ¢ (U) > dim¢ (T ). Using
Lemma 3 and Theorem 2 one obtains the inequality

2(n—k=1) 427 =2 > pnk=1 Je y_k>142"k3

which holds only for n — k < 6. Therefore, if n — k > 5, then X £ @. O
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3.3. The Dimensions

Elementary arguments about dimensions, known already to Veblen and
Givens [VG], have been at the origin of the notion of pure spinors: the
projective space P(.S) of directions of Weyl spinors is (27~! — 1 )-dimensional,
whereas the manifold of all mti subspaces of C" has complex dimension
%n(n —1) (see [PeR, vol. 2, p. 453] for a simple proof of the last statement).
For n = 1, 2 and 3, these dimensions coincide, but 27! — | > %n(n — 1) for
every n > 3. The following Lemmas will allow us to compute the dimensions
of spaces of partially pure spinors of a given nullity.

Lemma 4. The dimension of QX is 2kn — Yk (3k + 1).

Proof. Let W = C?"; consider the tautological principal bundle
GLy — Ej — Q;

such that
Ef = {(v),....v,) € W¥r:span{v,,..., v} € Q).

The dimensions of EX and of its fibre being 2kn — %k(/\' + 1) and k?, respec-
tively, one obtains dim Q% = dimE} — dimGLy = 2kn — 1k (3k + 1). O

Lemma 5. Consider the bundle
@F — QX such that ®F = {((x,T): x € o(T) and T € QL}. (28)

(i) The map r - ®F — Sk, (x.T) v x is surjective.
(ii) If the set XX is not empty, then the map % obtained by restricting © to
n=(ZK) ¢ ®F is an injection into Xk

Proof. (i) The map = is surjective because, if x € SX, then dim N (x) > k,
one can choose T C N(x) of dimension k and then (x,7T) € CD,/f. A fibre
@(T) of the bundle (28) is mapped by 7 injectively into SX. To prove (ii),
suppose that Z,’{ # P and 7 is not injective. Let 77, 7> € QX, and x be such that
x € o(T)Ng(Ty) N Xk This implies 7} C N(x), T» C N(x) and, therefore,
Ti+ T, ¢ N(x). If T} # T5, then dim(7, + T>) > k and this contradicts
xe Xk O

Corollary 3. If X% is not empty, then its dimension equals that of =1 (ZF).

Theorem 5. In the notation of §3.2 one has
() dimX) =1+ %n(n - 1),
(i) Zr=1,xn=2 373 and X775 are empty,
(i) dimXfF = k(2n - LBk + 1)) + 2" k1 fork =n—-4 and k <n->5.
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In particular, for n > 5, the set X9 is open and dense in S: a Weyl spinor in
a general position is not annihilated by any non-zero vector.

Proof. Part (ii) follows from Theorem 4; to prove (i) and (iii), assume X # 0,
so that Lemma 5 and its Corollary can be applied to give

dimX¥ = dimz~'(Z¥) = dim ®f = dim Q% + dimp(7),

where T € QX so that, according to Theorem 2, one has dim ¢ (7T) = 2#~*~!
for k = 1,....n -1 and dimg(T) = 1 for T € Q#*. It now suffices to use
Lemma 4 to obtain the announced dimensions. O

The classification of spinors according to their nullity is coarse in the sense
that, with the exception of the orbits of pure spinors 27, and a few others, the
strata XX are collections of many orbits. This coarse classification has been
presented here for arbitrary n, whereas the precise classification, along the
lines developed by Igusa, is limited to n < 8; in the words of Popov: “the case
we are investigating is one of the last where the problem of classifying spinors
has a reasonable meaning and can be conclusively solved” [Pp, p. 182]. It is
worth noting that there are two ‘dimensional thresholds’ in the study of spinor
representations: the first occurs at dimension m = 6 of the underlying vector
space W. For m > 6, the dimension of the manifold of all mti subspaces of
W is smaller than that of the (projective) space of spinors. The second is at
m = 14: for m > 14, the dimension of the space of spinors is larger than that
of the group Spin,,.
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