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Abstract

With everynon-zerospinorx thereis associatedatotally isotropic subspaceN(x) of
theunderlyingvector spaceW; thesubspaceN (x) consistsof all vectorsannihilating
thespinor. The dimensionv of N(x)—the nullity of x—is an invariantof theaction
of the Clifford group and providesa coarseclassification of spinors. According to
a terminology introduced by Cartan and Chevalley, a spinor is pure if the space
N(x) is maximal amongtotally isotropic subspacesof W. In this paper,we consider
‘partially pure’ spinors, i.e. Weyl (= semi-) spinors suchthat 0 < v < n, where 2n
is the dimensionof the vector spaceW endowedwith a neutral quadraticform. All
homogeneouspolynomial invariants areshown to vanish on Weyl spinorsof positive
nullity. We also showthat thereareno Weyl spinorsof nullityi’ suchthat n —4 < ii < n
or ii n — 5. We computethe dimensionsof spacesof partially purespinorsandshow
that, for n = 4 or > 5, generic spinors have nullity 0. The paper containsalso a
heuristicintroductionto thenotion of pure spinors,commentsabouttheir geometrical
andphysicalsignificanceand remarkson thehistory of thesubject.
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1. Introduction and historical remarks

1.1. Notation and heuristic considerations

This paper is intended to be self-contained;for this reasonwe present,in
considerabledetail, not only our notationand terminology, but also some of
the standarddefinitions and results in algebra,neededto prove the theorems
on partially pure spinors. Some of the well-known and important resultsare
formulated as Propositions, with referencesto the literature insteadof proofs.
We use the label Theorem when we feel there is need for a proof, because
eitherthe result is new or no suitable referenceis known to us.

1.1.1. Vector spacesandquadraticforms
There are two ‘natural’ quadratic forms, associatedwith vector spacesof

low dimension: the determinantand the Pfaffian; they lead to the ‘generic’

isomorphismsamongthe classicalgroupsandtheir Lie algebras[D.W2}. They
arealso useful in describingspinorsassociatedwith such spaces.

If K is an Abelian group and 0 denotes its neutral element, then K~ =

K \ {0}. In particular, if K is a field, then K~ is its multiplicative group.
Throughout this paper, 14’ denotesa finite-dimensionalvector spaceover a

field K of characteristic~ 2. Beginningwith ~2.6 we assumeK = C. Let 14”
be the dual of IT’. i.e. the vector spaceof all K-linear mapsfrom W to K. The
valueof the 1-form w’ on u e 13’ is often denotedby (it. u~.If I’ C 14’, then
VC ci I’V’ is the vector spaceof all forms vanishingon all elementsof 11 If V
is a vector subspaceof 11~,then 1’°°= 1’. If ii is a non-degeneratequadratic

form on 14’. then the pair (111 h) is said to be a quadratic space: thereis the
associatedisomorphismg : 14’ —~ Ii” obtainedby ‘polarization’ of h, viz.

2(w1, g(mm)) = h(w1 + lfli) — h(wi ) — h(u’2). where ui. ti:2 e 141(1)

It satisfies (w, g(mi )) = Ii (it’) and ~ (u~,?I)2 ) = (it’1, g (PH)) is the scalar
productof the vectors it’1 and ic2. If V ci If’, then V-i- is the vectorsubspaceof
W consistingof all vectorsorthogonalto all elementsof 11 A vector subspace
V of I3~’is said to be isotropic (null 2 ) if Ii restrictedto 1 is degenerate:it is
total/i’ isotropic if h~V= 0. or, equivalently, if V ci U-’-. The index of/i is the
dimensionof maximal totally isotropic (inti) subspacesof W. For h defined
on a spaceof dimension in = 2n or 2n + 1. the largestvalue of the index is

2 According to F. Klein (see Ch. 4 in [K] ), the adjective isotropic ~sasused by A. Ribaucour

(1845—1893) in the context of the geometryof C
2: the vector (1. i) is ‘isotropic’ becausea

rotation by the angle th in the complex plane maps it into c’~(1, i). a vectorparallel to (1. i).
This observationdoesnot generalizeto higher dimensions;physicistsoften use the phrase~null
elements~.which, however, does not translate well into French and is not recognizedby pure
mathematicians.Cartan [Cl] used the expression‘optical direction’, which seemsappropriate.
but hasnot gainedacceptance.
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n. A quadraticform of maximal index on an even-dimensionalvectorspaceis
said to be neutral. If f : Vj —~ I’~is a K-linear map of vector spaces,then the
transposedmap tf : V~’—~ Vj’ is definedby (f(v

1), v~)= (v1, tf(p~)),where
V1 E L~and v~e Ui’. In particular,g is symmetric,

tg = g. We identify, in the

usual manner, V” with V.

1.1.2. TheGrassmannalgebra
Throughoutthis paper,by an algebrawe meanan associativealgebrawith a

unit element,which is denotedby 1. A homomorphismof algebrasis under-
stoodto mapone unit into another.We denoteby AV the Grassmannalgebra
of V. A linear map f : V~—~ 172 extendsto the homomorphismof algebras
Af : AJ/j —~ AJ~.The pairing V x U’ —~ K is extended to AU >< AU’ —~

K so that (v
1 A ... A Vk, v~A ... A v(<) = det((v1,v~)),where v1 e V and

v~e U’ for i, j = 1,.. . , k and k 1,.. . ,dim V. The Grassmannalgebra
hastwo important involutive maps:the Z2-gradingautomorphismcs suchthat

c~(1)= 1, o(v) = —v, for v e V, andthe main antiautomorphism/3 suchthat
/3(1) = 1, /3(v) = v; if xe AkV, then /3(x) = (_l)k~~/2x.The evenand
odd subspacesof AU are denotedby A~V and A- V~respectively,and there
is the decomposition

AV=A~V+AV. (2)

If xc AU, then e(x) : AU —+ AU is a linear map, the exteriorproduct by x,
given by e(x)y = x A y andc(x) : AU’ —f AV’, the interior productby x (or

the contraction with x), is the map transposedwith respectto e(fl(x)), i.e.
(y,c(x)z’) = (/3(x) Ay,z’), for everyye AV and z’ e AV’. In particular,

‘e(v) = c(v) for every v c V. (3)

The easy-to-checkformulae

/ioe(v) = e(v)oso/3 and jloc(v) = —c(v)ocsoJ3

areusefulin computations.The mapse(z’) and c(z’) are similarly defined. If

v’ c U’, thenc(v’) is an anti-derivation, of degree— 1, of the 7/-gradedalgebra
AV and

e(v)oc(v’)+c(v’)oe(v)=(v,v’)idAv

for every v c V.

1.1.3. Hodgeduality
If the vector spaceV is n-dimensional,then a volumeelementr~ on V is a

non-zero n-form, e e A’~V’. We define the (modified
3) Hodge isomorphism

The modification, which consists in using, in formula (5), the expression/3(x) A y instead
of x A y, is in agreementwith the Kähler definition of the Hodge dual in terms of Clifford
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relativeto c,

e : AV AU’. by e(.v) = c(x)r, (4)

i.e.

(/3 (x) A i’. r) = (re (.v)) for every x, v c All (5)

The abuseof notation implied by (4) is justified by e(l) = e. From /3(e) =

(1 )n(n~
1112e and (/3(x),/3 (x’)) = (x, x’) oneobtains

= (—1 )fl(fl I (6)

Moreover, the definitions imply

eoe(v) = c(v)oe and 800(1”) = e(v’)or (7)

for every i, e 1~and i” c U’. If (u
1,. . . , u~)is a linear basis in a vector

subspaceU of U, then e(u1 A A u9) is of the form u~+iA A u,, where
u~e U’, i = k + I n andU°= span{u~~1

If n = 2p , then there is the bilinear map

A~1
7x A~V K, (x,v) (x,e(i’)), (8)

which is symmetricor skew, dependingon whetherp is evenor odd.

1. 1.4. Low-dimensionalexamples
We denote by End(S) the algebra of all K-linear endomorphismsof a

finite-dimensionalvector spaceS. If x e S and x’ c S’, then there is the
endomorphismx ci x’ such that

(x ci x’) (v) = (i, x’) x for every ~ c S.

Clearly. Tr(x cix’) = (x,x’), t(xcix’) = x’®x and

uo (xcix’) 00 = u(x) C’V(X’) (9)

for every x eS,x’ ES’, andu,v c End (S).
Consider now a two-dimensionalvector spaceS over K. with a volume

elemente and the associatedfour-dimensionalvector space H’ = End (5).
The quadraticform

h = det: End (S) —* K

definedby

w (x) A to (y) = (detto) x A i’, where x, y c S and to e 1’V~ (10)

multiplication by the volumeelement [BT1.RoT2]: seealso (23). It leadsto the simple formula
(6) for the transposeof e.
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is non-singular; from (5) and (10), by evaluating t~jj o Cow Ofl x and y, one

obtains (y, two cow (x)) = (to (x) A to (y),e) = (y, e(x)) detw, or
‘J.V’oW = (detw)ids, (11)

where to’ = ~ tw o e ~Sis also an elementof W. The four-dimensional
vector space of Dirac spinors,associated with W, is the direct sum, R = Se5,
of two copies of spaces of Weylspinors. Let

( 0 to
y(w) : R —s R be defined by y~~)= ~ ~

then (11) gives

= h(w)idR. (12)

The endomorphismsy(w), where to e W, generate the algebra End (Se 5),
which, in this context, is the Clifford algebra of (End (5), det) over K. From
now on, to the end of this paragraph, we write z = (x,y) e5+5 and identify
x with (x,0) andy with (0,y). By virtue of (12), the set

N(z) = {w e W: y(w)z = 0}, where z e

is a totally isotropic subspace of W. Moreover, N(x,y) = N(x) fl N(y). If
x ~ 0, then N (x) is maximal among totally isotropic subspacesof W: it is,
indeed, two-dimensional because it can be identified with x ci 5’. Similarly, if
y ~ 0, then N(y) = S®e(y). Therefore, if both x andy are non-zero, then
N(x) n N(y) = Kx ci e(y) is one-dimensional.

Consider next a four-dimensional space S over K, with a volume element
e e A4S’. According to (8), the six-dimensional vector space W = A25 has a
quadratic form defined by the Pfaffian, h = Pf,

Pf(w) = ~(wAw,c), where w~W.

Since now W ci Horn (S’,S) and W’ C Hom(S,S’), thereis a composition
map, Wx W’ —~ End(S), such that, for every x

1,x2 eS and x~,x~’~S’, there
holds

(xl Ax2) o (x~ Ax~)

~

There is a similar composition map with W, W’ and S replaced by W’, W and
5’, respectively. For every w E W one has

woe(w) = h(w)ids and e(w)ow = h(w)ids.
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Defining now the space of Dirac spinors as R = Sci 5’ and

1 0 ii’
= ~e(ii’) 0

one seesthat Eq. (12) holds againand End (Sci S’) is the Clifford algebraof

(A25.Pf). Putting = (x.x’) eSCS’ and making similar identifications to
thoseof the precedingparagraph,one obtainsthat, for .v e S’.

N(x) = (u c 13’: ii’ A .v = 0}

is a three-dimensionaltotally isotropic space,consistingof all bivectorsof the
form x Al’, where i’ ES. Similarly, jf~~”c 5~x,then

N (x’) = {w C 14’ : u: (x’) = 0}

is three-dimensionaltotally isotropic, andcan be identified with A2x’°. There-
fore. if bothx and .v’ are~ 0, then

~(v) fl Y(v’) = 5 {0} if (x,.v’) ~ 0- - ~ Kx A x’° is 2-dimensionalif (x. .y’) = 0.

The aboveconstruction,used in twistor theory [PeRJ. prolongs to a seven-
dimensionalvector spaceU = 14 ci Ke

7, where 14’ = A
2S and the quadratic

form on U extendsthe Pfaffian and makes the unit vector e
7 orthogonal to

W. One represents e7 in R = Sci 5’ by the endomorphism

(1 0;‘(e7) = ~\0 —1

If: = (x.x’) ~ 0 and a = it’ + ).e7, then

N(:) = (a E U: u:(x’) + Ax = 0 and e(w)(x) _).x’ = 0}

is totally isotropic and maximal (i.e. three-dimensional) if, and only if,

(x,x’) = 0; otherwise. N(:) reducesto the zero vector. Seven is the least
dimensionof a vector space,with a quadraticform of maximal index, which
admits spinors of the latter type: for in = 3 and 5 every spinor and for
tn = 2, 4 and 6 every Weyl spinor x is pure: its nullity—the dimensionof
~\‘(x )—is equal to the index of the quadraticform.

1.2. Historical remarks

There is a ‘prehistory’ of spinors: the germsof the ideas of spin groups
and their representationscan be found in the work of L. Euler, 0. Rodrigues,
W.R. Hamilton, A. Cayley, W.K. Clifford and R.O. Lipschitz, see [BT1,T}
for referencesand further remarks on this subject.Elie Cartan [Cl] discov-
ered what are now called spinor representationsof the complex Lie algebras
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so(n), n > 2. Spinorsowe their nameand fame to physicists. According to
B.L. van der Waerden [W3], the namespinor is due to P. Ehrenfest,who
suggested,on a visit to Göttingen, to developa spinor analysis analogousto
tensor calculus [W 1]. During the first 1 5 yearsthat followed the discoveryof
the spin of the electron, importantwork on spinorswas done by Pauli, Dirac,
Weyl, Fock, Bargmann, Schrödinger, Majorana, LaporteandUhlenbeck,Infeld
and van der Waerden, Haantjes and Schouten,and several other authors;a
good source of references to that period is [Co]. The connections between
spinors, totally isotropic spaces and projective geometryseemto have been
clearly stated, for the first time, by 0. Veblen [Vl,V2] and developed in
seminarlecturesat Princetongivenjointly with J.W. Givens [VG]. The latter
prepareda Ph.D. thesis [G], which, in a sectionon the Geometryofa gener-
alization of the Plucker—Kleincorrespondence,contains remarks that may have
influenced E. Cartan in his work on pure4 spinors; by some accident, Ref. [G]
appears in the French original [C3], but not in the English translation [C4]
of Léçonssur Ia théoriedesspineurs.At about the same time, Brauer and Weyl
[BrWe] gave a description of the representations of the groups Spinm; they
madeclearthe role of the Clifford algebrasin their constructionandfound the
decompositionsof the tensorproductsof the representationsinto irreducible
parts.

Cartan’sLectures [C3,C4] contain an expositionof the notion of a pure
spinor and are rich in geometricalideas; some of the proofs there are out-
lined only and the underlying field is restrictedto be either C or It. These
shortcomingshave beenovercomeby C. Chevalley, who basedhis Algebraic
theory ofspinors [Ch] on the notion of minimal, one-sided ideals of Clifford
algebras, an idea considered earlier by M. Riesz [Ri I in the context of the
Dirac equationin the theory of generalrelativity and,lessexplicitly, by several
physicists;see [5] andthe referencesgiven there.Very early, spinor fields were
introduced, in a ‘local’ manner, on Lorentzian manifolds of Einstein’s theory.
For a considerable length of time, the lack of a global definition, needed in
the context of manifolds with non-trivial topology, and the subtle differences
between tensors and spinors, baffled mathematicians and physicists alike; com-
pare,e.g., an opinion expressedin 1928 by C.G. Darwin (quotedin [BT1, p.
4]), the footnotesat the endof [C3], the discussionson the Lie derivativesof
spinorsor a paperthatappearedin an earlyvolume of thisJournal [Mo]. The
properdefinition, intimatedby Cartan,hasbeengiven, in the 1950s, in terms
of fibre bundles;see [LM] for a presentationof the notion of a spin structure
andof the applicationsto geometryof global propertiesof the Dirac operator.
This bookis alsoa good guideto the ‘modern’ periodof the work on Clifford

~ In fact, Cartanusedthe expressionspineur simple; the name‘pure spinor’ is due to Chevalley
and seemsto have been generally acceptedeven though it is somewhatdisturbing to think of
Dirac spinorsasbeing ‘impure’, cf. [BT2].
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algebrasandtheir representations,on the index theoremin the contextof spin
structures,on spin cobordismandon harmonicspinors.

The projective-geometricaland ‘optical’ aspectsof spinors, introducedby
Veblen andCartan,haveled to importantapplicationsin the theoryof general

relativity and Yang—Mills theory, mainly through the work of Roger Penrose
and his school,andthe developmentof his twistor theory [A.PeR].

1.3. A short remarkon applicationsofpurespinors in physics

In this paper, we consider the problem of classifying Weyl spinors according
to their nullity. The main resultsare summarized in the theorems in Section 3.
Most of the time, we restrict ourselveshere to the field of complexnumbers.
but important applications of pure spinors are associated with real structures
[BeTu,K0T,PeRI . Put very briefly, they rely on the following [NuT,T}: If l’J”
is the complexification of a real space J7 with a scalar product of signature
(2p + ~.2q + ~). where c5 = 0 or 1 and p + q + 5 = n, then the real index
of a pure spinor x ~ 0, r = dim(N(x) n N(x)). in the generic case equals
~. Therefore, the direction of a pure spinor in a generalposition definesin I’
a complex (5 = 0) or an optical (d = 1) structure.Theseobservationscan
be applied to a smooth, orientable2n-dimensionalspin manifold M with a
bundle of directionsof generic pure spinors. A section of this bundle—if it
exists—definesan almost complexor an almost optical geometry,depending
on whether r = 0 or 1. With such a section one associatesa bundle~\f of
maximal, totally isotropic subspacesof the complexified tangent spacesto
.\4. Denotingby Z the moduleof sectionsof the bundleA~,oneconsidersthe
integrabilityconditions [Z. 2] ci 2. In the pseudo-Euclideancase(5 = 0), the
condition is equivalentto the vanishingof the Nijenhuis tensorof the almost
complex structure; in the Lorentzian, four-dimensionalcase, it is related to
the geodetic,shear-freepropertiesof the trajectoriesof the real line bundle
Re (A~n~)— NI. In the theoryof generalrelativity, congruencesof shear-free
isotropic geodesicsplay an importantrole in the study of algebraicallyspecial
gravitationalfields; see [PeR,RoT1I and the referencesgiven there.

2. Grassmannians,Clifford algebrasandgroups

With avectorspaceW overK oneassociatesthe kth GrassmannianGr” (W)
of all k-dimensionalvectorsubspaces(k-planes)of 14” andthe total Grassman-
nian Gr ( 147) = Uk Grk (IT’). The generallineargroupGL ( I’V) actstransitively
on eachGrk (W). In particular,Gr’ (W) = P (l3~)is the projectivespaceasso-
ciatedwith ~V There is a canonical map dir: 147x —‘ P(14’).
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2.1. The Witt theoremand quadric Grassmannians

The isotropic conein a quadraticspace(W~h) is the set Wcone = (to C W
h(w) = 0} and the kth quadric GrassmannianQ”(W,h) ci Gr~’(W)is defined
as the set of all totally isotropic k-planesin W [Pr]. In particular,Qt (W,h) ci

P(W) is the quadric andthe map dir restrictsto Wcone\ (0} Q1 (W~h).The
total quadric Grassmannianis Q( IT~h) = Uk Q” (W,h).

Proposition 1 (Witt). Let 1+’ be a 2n-dirnensionalvectorspaceover K with a
neutralquadraticform h. Then

(i) the group0 ( I4”~h) oforthogonalautomorphismsof ( W~h) actstransitive/v
on eachquadric GrassmannianQ” (W,h), k = 1,. . .

(ii) if T is a maximaltotally isotropic (inti) subspaceofW, with a linear basis
(t

1 t0), thenthere existsanothermti subspaceU of W, with a linear basis
(u1,... , u~)such that W = T ci U andg(t~,u1) =

5jj for i,j = 1,..., ~
(iii.) if T

1 is a subspaceof T, then there is a subspaceU1 of U such that
h~Tlci U~is non-degenerate.

Proof Can be found in [Bour, §4, no. 2 and 3].

Lemma 1. (i,) Every totally isotropic subspaceV in a vector space W with
a neutral quadratic form can be representedas an intersection of two mti
subspacesof W.

(ii) If T1 and T2 are two totally isotropic subspacesof W and T2 ~ T1, then
thereexistsan mti subspaceU ci W such that

7’l ci U, but T
2 ~ U.

Proof The first statementcan be proveddirectly by usingthe Witt decompo-
sition andbasis.Assumingthat 147 is 2n-dimensionalandusingthe notationof
part (ii) of Proposition I, one can representa k-dimensionaltotally isotropic
spaceas

span{tI,...,tk} = span{ti,...,t~}flspan{tl,...,tk,uk+l,...,ufl}.

The second follows from the first: let T~= V. fl U,, where 17, and U1, i = 1, 2,
are mti spaces.Since T2 ~ T1, at least one of the following is true: T2 ~ or
T2~U1.

2.2. Clifford algebras

The following two statementsareclassical;see,e.g., [Bour].

Proposition 2. Let Y(W) be thetensoralgebra ofa vectorspaceW over K and
let 1(h) be the bilateral ideal of IT( 147) generatedby all elementsof the form
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w ~ u — h(to ). I, where h is a quadratic form on 141 The Clifford algebra of
the quadraticspace(141 h),

Cliff(W./i) = T(IT’)/I(h)

is an algebra over K, containing 14~as a vector subspace, and having the
universalproperty: if A is an algebra over K and f : 11’ A is a Clifford map,
i.e. a linear map such that f (to )2 = h (ii). 1 for even’ u E 111 then there is
a homomorphism f : Cliff( 141 ii) — A of algebras e.vtending f. i.e. sac/i that
foW =.f.

The Clifford map to ~ —w extends to the 7Z2-grading automorphism~,
of Cliff(J’V,h): the canonical injection of 14’ into the algebra opposite to
Cliff( H’l h) gives rise, in a similar manner,to the main antiautomorphism13j,.
The evensubalgebrais

Cliff~(1f1h) = {a e Cliff(ITlh) : ~12(a) = a}.

Proposition 3. There is au isomnorphismofvectorspaces

Cliff(13’.h) — A1T (13)

obtainedby extendingthe Clifford map

.f: W — End AUl f(u’) = e(u’) + c(g(ii’)),

to the homomorphism.1 : Cliff( 141//) — End A W and evaluatingit on the unit

elementI ofAH1 i(a) = f(a)l. Moreover i is the kientiti’ map on K 14’,

i(wa) = e(w)i(a) + c(g(u’fli(a). (14)

for everya’ e 14’ anda C Cliff( 111/i),

— ia) = 2i(u) A i(m’) for ii,i’ C IT’

and

iO(5/,=(~O1. lo/3h=/
3o1.

2.3. The Clifford group

Let u E 1T be a non-isotropicvector: the map

tO /3(11)11’ = —un’u~’. (15)

of 14’ into itself, is a reflection in the hyperplaneorthogonal to a. The multi-
plication on the right side of (15) is in Cliff( 141 h) and u’ = Ii (u)~it. The
samemap, expressedin terms appropriateto the Grassmannalgebra, reads
~ ~ a(u)u’. where
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a(u) = h(u)~(e(u) + c(g(u)) o (e(u) -c(g(u))

=idw—2h(u~~e(u)oc(g(u)). (16)

The latter mapextendsto the automorphismAa(u) of the Grassmannalgebra.
The Clifford groupG(W,h) is definedas the subsetof Cliff(W,h) consisting

of the productsof elementsof all finite sequencesof non-isotropicvectors;
multiplication in the group is inducedby that in the algebra. If a e G ( Wç h),
thenji(a) = J3h(a)a e K>< is the norm of a. With p definedby

p(a)w = o(a)wa~ (17)

onehasthe exact sequenceof grouphomomorphisms

1 .‘ KX G(WIh) ~ 0(W~h) I.

For a = u
1 ... uk e G(WIh) one puts a(a) = ci(u1) 0.0 o(uk); this defines

a representationof the Clifford groupin AW. The evenClifford group is

G~(W,h)= G(I4~h)nCliff~(W~h).

andonehas

i(aba~)= Aa(a)oi(b) (18)

for every a eG~(WIh)andbE Cliff(14’,h).

2.4. Thehyperbolicmodelofneutralspaces

It is convenientto havea ‘universal’ model of vectorspaceswith a neutral
quadratic form; such a ‘hyperbolic’ model and the correspondingClifford
algebra, aredescribedin the following Proposition.

Proposition 4. Let U be an n-dimensionalvectorspaceand let 14~= V ci U’ be

giventhe canonical, neutralquadraticform h,

h(v + v’) = (v,v’)

~forevery v e U and v’ e U’. There is an isomorphismofalgebras

y:Cliff(W~h)—~EndAU (19)

obtainedby extendingthe Clifford map U ~ U’ — End Al
7 such that n + v’ ‘—~

e(v) + c(v’). For everya eCliff(W,h) onehas

ty(flh(a)) = 8o~(a)oe~. (20)

Proof This is also well-known (see, e.g., [Ba]): both V and U’ are mti
spacesand (20) is a consequenceof (3) and (7). One saysthat (19) is a
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representation of the Clifford algebra of a neutralquadraticspacein the space
R = A V of Dirac spinors. This representationis faithful and irreducible.

The dual IV’ of IT’ = V ci 17’ can be identified with the space14’ itself, the
pairing beingdefinedby

(m~+ i’~.v~+ i’~) = ~(i’~, i’~)+ ~(l’2, ic) for i’~C 11 l’ C 1”, / = 1,2.

The isomorphism g, associatedwith h by (1), reducesnow to the identity. Let

(i’1). i = 1 n. be a linear basisin F

and (v,’) the associated dual basis in J~”. (21)

The volume element

= (v~v — 1’ /i’ ~) . (p’~, i’,,t’~)

satisfies

= 1 and 1 (ti) = 2~1, A ?‘~A . .. A ?~A i,,.

Moreover,since;‘(?‘1’,—v10)l1 = i’~for i ~ j and —i’s for / = j, oneseesthat,

defining the heliciti’ automnorphismby F = ;‘(ifl. one hasT(x) = (—l)~~’
1x.

where x(x) = 0 or 1 for .v C API’ or Al’I respectively. In this context.
one says that (2) is the decomposition of the space of Dirac spinors into two
spacesof Weyl spinors of positiveandnegative helicities. Denotingby S the
spaceof Weyl spinorsof positive helicity. one obtains,by restriction of (19),
the representationof the evensubalgebra,

2 :Cliff~(WIh) —‘End(S), where S = A~l1 (22)

The Kähler dualof an elementof A1J~is definedby

*i(a) = i(i,ia) for a C Cliff(14’,h) (23)

so that

** = id and flo* = (—l)0*oflo~. (24)

2.5. Thebilinear equivariantmap

Let (1+1h) be the quadraticspacedescribedin Prop. 4. The representation
(19) and the isomorphism (13) define an isomorphismof vector spaces

K = io~’~’ : AJ7C Al7’ — A(l’p I”).

which is different from the canonical, linear isomorphism among these spaces
obtainedby extendingthe map.v ci i” p—’ .v A y’, where x C AU and y’ C AU’.
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For example,if (xA), where A = 1,.. . , 2~,is a linear basis in AU and (x~)
is the correspondingdual basis in AU’, then,c(~4xA ci x~) =

1AW. With a
pair (x, y) of spinorswe associatethe multivector

E(x,y) = ic(x®c(y)), x,y E AV~ (25)

anddenoteby E~(x,y)the componentof E(x,y) in AkW. We define the
‘quadratic covariant’ associatedwith a spinor x e AU by F(x) = E(x,x)
andput Fk(x) = Ek(x,x).

Theorem 1. The bilinear map E : AU x AU —~ AW defined by (25,) has the
following propertiesholdingfor every x, y e A V~a eG+ (WI h) and to e 147.

(i) it is equivariantwith respectto the action ofG~(W,h),

E(y(a)x,y(a)y) = p(a).Aa(a)oE(x,y);

(ii) E(y(w)x,y) = (e(w) + c(g(to)) o E(x,y);
(iii~) E(v,x) = (—1 )n(nl)/2fl 0 E(x,y);
(iv) E(T’x,v) =

(i) E(x,Fy) = (—l)”soE(Fx,y);
(vi,) if x andy are Weylspinors, then

x(x) + x(~’)+ k — n 1 mod 2 implies E~(x,y)= 0;

(vii) if x is a Weylspinor, then Fk(x) = 0 unlessk n mod 4.

Proof

(i) Fromthe definition of E and (9), onehas

E(y(a)x,y(a)y) = 1(ay~(xcic(y))fl~(a))

and the result follows from (18).
(ii) This is a consequenceof (9) and (14).
(iii) Use y 08(x) = e~ot(xcie(y)) ore, (6) and (20).
(iv) Follows at oncefrom (23).
(v) Follows from (iii), (iv) and (24).
(vi) Assumingthat x andy are Weyl, from (iv) and (v) one obtains

E(x,v) = E(x,F2y) = (—l)’C~soE(Fx;Fy)

= (—1 )~~‘~“ct 0 E(x,y).

(vii) Note that (iii) can be written as

Ek (y,x) = (—1 )(n_k)(n+k_l)/2Ek (x,y)

and ~(n—k)(n+k—l) 1 mod 2fork—n 2 mod 4; jfk—n 1 mod2,
thenFk(x) vanishesby virtue of (vi).



14 .4. Trautman, K. Trautman/JournalofGeometryand Physics 15 (/994) 1—22

Note that if x is a Weyl spinor of nullity a, N(x) = span{ei~, u’~}. say.
then thereexists ‘~PC AW such that

F(.v) = ii’~ A A u’, A &

2.6. The Cartan—Cheva/leytheory ofpure sp/nors

Fromnow on, throughthe endof the paper,we restrict ourselvesto complex’
vector spacesof evendimension iii = 2ui > 0 and considerClifford algebras.
spin groupsandspinors associatedwith such spaces.The ground field being
fixed, we use a notation emphasizingonly the dimensionof the underlying
space.Thus the Clifford algebraof the quadraticspace (C’°.h).with Ii non-
degenerate,is denotedby Cliff,, and G,,, is the correspondingClifford group.
GL,~is the generallinear group. etc. The Pin andSpin groupsare definedby

Pin,, = {a C G,,, : u(a) = 1)

and

Spin,,, = Pin,, fl Cliff~,

respectively.We write Q~insteadof Qk (C2”. Ii).
Elie Cartan’s theory of pure spinors can be summarizedas follows. Let

(t
1 1,,) be a linear basis in an miiI/ subspaceT of fl~= I’ ci U’. Since the

representation(19) is faithful, thereexistsa spinor = C R = Al’ suchthat .v =

y(t~.. .1,,) ~ 0. The spinor .v is pure, .V(x) = T. For example.A
T(l) = 1”.

If t’ is anotherspinor such that .V(i’) = T, then thereis i. C C’ such that i’ =

).x. Therefore.thereis a bijectivecorrespondencebetweenthe set of directions
of pure spinorsand the quadric GrassmannianQ~.a complex manifold of
dimension ~n(n — I). For every x C R and a C Pin,,, one has .V(;’(a)x) =

p(a)N(.v). Every pure spinor .v is a Weyl spinor. T(.v) = (—I )~‘5.v: if
N(x) = span{t

1 t~}. then *(t1 A . . . A t~) = (—1 )X’)11 ~ . . . A 1,,. There
is a bijective correspondencebetweenthe set of directions of pure spinors
of positive helicity and the manifold Q;~+ of self-dual (one also says: of
positive helicity) mnt/ subspacesin IT’. This manifold is oneof two connected
componentsof Q~. The groups02,, and SO2,, act transitively on the spacesof
directionsof all purespinorsandpure spinorsof a given helicity. respectively.
Less obviousare the following facts.

Proposition 5 (Cartan—Chevalley). (i) .1 Wevl spinor x ~ 0 associatedwit/I
IT’ = ci

2” is pure if and unIt’ ill Ff(x) = 0 for k ~ it:

This assumptionis not essential: all the following considerationscan he formulated so as to
be valid over a field of characteristic~ 2. we prefer, however,to confineourselvesto complex
geometry and use the conceptof a manifold, more familiar to physicists than the algebraic
geometers’notion of varieTies.
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(jo if x andy are pure spinors, then the dimensionof N(x) fl N (y) is the
leastintegerk such that Eg(x,y) ~ 0; moreoverEg(x,y) = A Avk, where
the vectorsv1,.. .,Vk are such that N(x) n N(y) = span{vl,...,vk} and one
has ~(x) + x(y) + k — n 0 mod2;

(iii~)if x andy are linearly independentpure spinors, then x + v is pure if
and only if dim(N(x) n N(y)) = n —2; if this condition is satisfied, then
N(x + v) fl N(y) = N(x) fl N(y).

Proof One finds it in [C3,Ch,BeTu].

2. 7. Orbits ofthe Spingroupsin low dimensions

A considerableamount of work has been done on the classification of the
orbits of the Spin groupsassociatedwith low-dimensionalspaces;essentially
everythingis knownup to dimension14 [Ig,Pp]. Forour purposesit is enough
to summarizethe resultsfor evendimensions< 12.

By restricting (22) to Spin2~ci Cliff~,,one obtainsthe Weyl representation
of the group in the 2”~-dimensionalspaceS of spinorsof positive helicity,

y : Spin20 —~ GL(S), S = A~U, J7 = C
0. (26)

Proposition 6. Consider the action of the group Spin
2,, in the space S>< of

non-zero Weylspinors, definedby the representation(26). Then
(i) For n = 1, 2 and 3, the action is transitive.
~i()If n = 4, then,for everyA C C, there is a 7-dimensionalorbit {x C S><

F0(x) = A} anddimN(x) = 4 or 0 dependingon whether).= 0 or A ~ 0.
(ho For n = 5 there are two orbits: that ofpure spinors, characterizedby

F1(x) = 0 and the orbit ofspinorsof nullity 1; if Fl(x) ~ 0, then N(x) =

CF1 (x).
(iv,) For n = 6 there is theIgusa invariant J (x) definedby

*J(x) =*F2(x)AF2(x).

For every A eCX thereis oneorbit {x C5: J(x) = A) ofdimension31. Besides
those,there are threeorbits on which the invariant vanishes.’

(a,) the 16-dimensionalorbit ofpure spinors, characterizedby F2 (x) = 0;
(~b,)the25-dimensionalorbit ofspinorsofnullity 2, characterizedby F-, (x) �

OandF2(x)AF2(x)=0;
(c,) a 31-dimensionalorbit ofspinorsofzeronullity, characterizedby F2 (x) A

F2(x) #0.

Proof (i) This is well-known: the groups Spin, = GL1, Spin4 = SL2 x 5L2
and Spin6 = SL4 act transitivelyon their respectivespacesof non-zeroWeyl
spinors. (ii) This is awell-known manifestationof triality. (iv) and (v) follow,
respectively, from Propositions 2 and 3 in [Ig].
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3. Partially pure spinors

We continueusing the notation introducedin §2.4 and §2.6. In particular,
R = AU and S = A~J7are the spacesof Dirac and of Weyl spinors of
positivehelicity, respectively,associatedwith the 2mi-dimensionalvectorspace
W = U I”.

Lemma 1 canbe completed by the following

Lemma 2. (i.) If T C Q~_I,then there exist exact/i’ two mti subspacesT
1 and

T2 containingT; theyare ofoppositehelicitv.
(ii~If T C Q~, wherek < n — 2, then T can he representedas an intersection

of either two or three mali subspacesofpositive helicitT’. dependingon whether
a — k is even or odd.

Proof (i) DecomposeII’ into a direct sum ~ ci FV of orthogonal subspaces
suchthat h~I4(i = 1.2) is non-degenerateandT ci U’~.Thendim l4~= 2 and
W’2cone = L1UL2 with dimL1 = dimL2 = 1. ThesubspacesT, = II’1ciL1 (i =

1, 2) are mti andof oppositehelicities becauseoneof them canbetransformed
onto the other by an isometry of IT’ which reducesto the identity on J3’~ and
is a reflection on 14’-,, interchangingL1 andL.

(ii) This can be provedalong linessimilar to theproof of (i), or, by adapting

a basis (21) to T andgiving an explicit constructionof the intersectingmntis.
For example, if a is evenandk is odd, then

span{v1....,?‘k} = span{i’1 .....i’,,} fl span{i’1 ‘‘‘‘
1’h’ t’k+ I’

n span{i’~ 1’k’ 1’k-i-2’ 1k+ I’ 1’k+l ,,.,1;,}

Theorem 2. Considerthe maps:

w:Q(ITlh)—.Gr(R) and~:Q(T31h)—’Gr(S)

defined, respectively,b”

~i(T) = {.v CR: ~‘(t).v = 0 .forevei~i’IC T} and ço(T) = ~i(T) flS.

(i) Themap ~,siis iniective.
(ii) Themap ~ restrictedto u~Qk (~Ih) is injective.
(iii) If T C Q~k, wherek = 1,...,a, thendim~(T) =

2k1 Moreover, if
T ci 17’, then the dual U’ of U = T~-n 1’ can be identified with a suhspaceof
V’ complementaryto T. Therestriction ofh to U ci U’ ci 131 is non-degenerate.
By restriction, (26) gives a representationof the group Spin2k ci Spin2,, in a
space of Weylspinors A + U = rp (T). Defining

= {u’ C U ci U’: ;‘(w).v = 0}, CL, = dimNL.(.v),

for .v C (A~U)’,
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onehas

n—v=k—ve. (27)

Proof (i) Let T1, T2 and U be as in part (ii) of Lemma 1. A pure spinor
x C i,u(U) belongs to yi(T1), but not to yi(T2). This proves the implication
T1 ~ T2 =~ çu(T1) ~ yi(T2).

(ii) This is provedsimilarly, using nowpart (ii) of Lemma2.
(iii) Using the notation of Prop. 4 and assuming T ci U’, T C Q~k, one can

take T = span{v~+ l’~ v~}. This being so, U = T~-n U = span{v1,... , Vk }
and U’ can be identified with span{vc,.. . ,v~}so thath~U+U’ is indeednon-
degenerate. Since y(t)x = c(t)x fort C U’, oneobtainsthat 9(T) = A~Uis
a 2’<~-dimensionalcarrier spaceof a Weyl representationof

5P~~2k~Finally,
if x C (A+U)x, then N(x) = Nt:(x) ci T, which proves (27).

Note that if oneappliesthe definition of the map p to totally isotropic (n — 1)-
planes,such as T

1 = span[vc, v~,v~,. . . , v~}and T2 = span{v~,tm~,v~,. . . , v~},
then one obtains ç~(T1) = ç~(T2) = C, eventhough T1 # T2.

3.1. TheInvariants

We introducenow asimplified notation: we write ax insteadof ~(a )x and
if A ci Cliff2~andx C5, then

Ax = {ax C S : a C A).

Theorem 3. Thefollowing threeconditionson the spinor x are equivalent:
(i) the nullity a of x is positive,’
(ii) 0 is in theclosure of theset ~ where~ = Wn Pinm is the set of

unit vectors;
(iii) the setWunitx is not closedin S.

Proof To prove (iii)=~’ (i), consider the linear map f : W —* S given by
f(w) = wx. Its kernel is N(x). If a = 0, then f is injective and the image
by I of the closedsubset Wunjt of W is closedin S. The implication (ii)=~(iii)
is obviousbecause0 ~ 1V~~~tx.Finally, to prove (i)=t~(ii), let a > 0 so that
thereis u C N(x)’< andonecan find a vectorv C ~one suchthatuv + vu = 1.
Onethenhas, for every s C ~<, q(s) C WIinit, where q(s) = e’u + e~

5vso that
q(s)x = e_svx. The set q(lt>< )x contains0 in its closure.

Corollary 1. Theset of all spinorsofpositive nullity is containedin the setof
all spinorsx such that 0 is in the closure of Spinmx.
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Indeed, if the nullity of x is positive, then 0 is in the closureof (Pin,,, fl W)x
and, a fortiori, in the closureof the larger set (Pin,,, \Spin,,,)x = ii’.Spin,,,x.
where ii: C 11~,.The map S — S. given by .v ox, is a homeomorphism

preservingthe origin; if 0 belongs to the closure of ii’.Spin,,,x. then it also
belongsto the closureof Spin,,,x.

A continuousfunction J : S — C is an invariant of the action of the group
Spin,, if, for everyx C Sand a C Spin,,,,onehasJ(a.\-) = J(.v). Forexample.
the scalarcomponentF0 of the quadratic covariant F defined in §2.5 is an
invariant.

Corollary 2. If .v is a spinor of positive nullity and j is an invariant, then
J(x) = J(0).

Proof This is a direct consequence of the preceding corollary. Explicitly, in
the notation of the proof of Theorem3, the map : — Spin,,,, given by
~(s) = q(s)(u + i’) = coshs+ (at’ — cu) sinhs. defines a one-parameter
subgroupof Spin0, and4i(sYe = es.v— 0 as s — —x.

In particular, all the invariants formed from Fk(x). k = 0 2mn. by ho-
mogeneoustensor operations(productsand contractions) vanish on spinors
.v of positive nullity. There is no converseto Corollary 2: the Igusa invari-

ant, which generatesthe algebra of invariants of the Weyl representationof
Spin12,vanisheson the orbit of spinors of nullity 0, describedin part (iv.c)
of Proposition6.

3.2. TheLacunae

We are now ready to answerthe following simple question: what are the
possiblevaluesof the nullity of a Weyl spinor?As a preliminarywe havethe
following

Lemma 3. Let T C Q~, where k < ii. The mnanifold

X = {U C Qk+l : T C U)

has dimension2(n — k — 1).

Proof Since T ci T-’-, one can find a space T1 complementaryto T in T~.
Becauseof k < a, onehas T~~ Wconeandthe intersectionT1 fl

14’cone\ {0) is a
hypersurfacein T~definedby the polynomialequationh (to) = 0, us C T

1><. To
specify U appearingin the definition of X, it is enoughto give the direction,
dir to, of a vector to C T1 n ft~one.Therefore,the manifold X canbe identified
with P(T1) n Q~.Since T1 has dimension 2(n — k), the manifold X is of

dimension2(n — k — 1).
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To keeptrack of the dimensions,let us now denoteby 5,, = (A + C’ ) X the
spaceof non-zeroWeyl spinors,of positive helicity, associatedwith the vector
spaceW = C2’. We define

= {xCS,:dimN(x) >k}, k = 0,l,...,n + I,

so thatS,~’= 0 and

so thatS,~is the spaceof purespinors,.�~ is the spaceof spinorsof nullity k
and

S,’cS~tci..cS~°=S,.

It is clear that, for every a C Spin
20, one has a.~= X~,i.e. X~is a union of

orbits of the group Spin20. The set X,~is either empty or open and densein
S~.More precisely,we have

Theorem 4. ThesetX~k, wheren — k > 0 and n = 1, 2 is empty if and
only ifk = 1,2,3 or 5.

Proof If x C 5k then there is T C Q~~’ such that x C ç~(T).Without
loss of generality,one can take T to be as in the proofof Theorem 2. Since,
for k = 1,2 and 3, every Weyl spinor x associatedwith the group Spin2k
is pure, one has, for thesevalues of k,

0u = k and (27) gives a = a: the
samespinor x, consideredrelative to Spin

2, is also pure. This proves5,n_3 =

5~2 = 5,~~i_l= S~.To show5~_4~ 5,’ for n > 4, consider,in the notation
of the proof of Theorem2, the pure spinorsx = 1 andy = V1 A to, A 03 A V4.

Since N(x) n N(y) = span{v~,.. .,v~}is (n — 4)-dimensional,on the basis
of part (iii) of Prop. 5 one concludesthat the spinor x + y is not pure; its
nullity is n —4. Let now x C 5~5and T C Q~

5be such that x C ç9(T).
According to part (iii) of Prop. 6, either x is pure—andit thenbelongsto
5,’ by a an argumentsimilar to the previousone—or its nullity is I. In the
latter case,Eq. (27) gives a = n — 4. This proves = 5~4~Finally, to
show that I/~ is non-empty for n — k > 5, considerT C Q~,k < n. Let X
be the manifold definedin Lemma 3, and let Y —~ X be the vector bundle
Y = {(x, U) : x C qi(U), U C X}. There is a tautological surjective map
Y —~ ~~+l fl ~(T)• if

5k = ~ then the map Y —* S~fl ~(T) = ç9(T) is
alsosurjectiveand, therefore,dim Y = dimX + dim ço (U) > dim ço (T). Using
Lemma3 andTheorem2 oneobtainsthe inequality

2(n—k—1) +2n ~2>2n~k~i i.e. n—k� 1 +2’~~~

which holds only for n — k < 6. Therefore,if n — k> 5, then X,~~ 0.



20 A. Trautman, K. Trautman/Journalof Geometryand Physics15 (1994)1—22

3.3. TheDimensions

Elementary argumentsabout dimensions,known already to Veblen and
Givens [VG], have been at the origin of the notion of pure spinors: the
projective spaceP(S) of directionsof Weyl spinorsis (20_l — 1)-dimensional,
whereasthe manifold of all mnti subspacesof C2’ has complex dimension
~n(n — 1) (see [PeR, vol. 2, p. 453] for a simpleproofof the laststatement).
For n = 1. 2 and 3, thesedimensionscoincide,but 2”~— 1 > ~n(n — 1) for
every a > 3. The following Lemmaswill allow us to computethe dimensions
of spacesof partially pure spinorsof a given nullity.

Lemma 4. The dimension of Q~ is 2kn — 4k(3k + 1).

Proof Let 14’ = C2’; considerthe tautologicalprincipal bundle

k k
,,

such that

E~= {(v
1 ,....Vk ) C : span{v1,. . . , m’~} C Q~}.

The dimensionsof E~andof its fibre being 2kn — ~.k(k + 1) andk
2. respec-

tively, one obtainsdimQ~= dimE~— dimGLk = 2kn — ~k(3k + 1).

Lemma 5. Considerthe bundle

—+ Q~ such that cl5,~= {(x, T) ‘..v C qi(T) and T C Q~}. (28)

(~The map m : —~ S~, (x, T): x is surjective.
(ii) If the set X,~is not empty, then the map ~ obtainedhr restricting m to

7r’ (X,~’)ci 1~is an injection into ~.

Proof (i) The map m is surjective because,if x C S~, then dimN(x) ~ k,
one can choose T ci N(x) of dimensionk and then (.v, T) C ‘J~.A fibre
~~(T)of the bundle (28) is mappedby m injectively into S~.To prove (ii),
supposethat If~� 0 and~ is not injective.Let T

1, T2 C Q~,andx besuch that
x C i’p(Ti) fl ip(T2) fl ~ This implies T1 ci N(x), T2 ci N(x) and, therefore,
T1 + T2 ci N(x). If T1 ~ T2, then dim(T1 + T2) > k and this contradicts
xC~.

Corollary 3. If X,~is not empty, then its dimensionequals that ofm (Ek)

Theorem 5. In the notation of~3.2one has
(i) dim2~= 1 + ~n(n — 1),
(ii~)sn_i xn_

2 X,~’—3and~ are empty,
(U~dimX,~= k(2n — ~(3k + I)) + 2’~~fork = n —4 and k <a —5.
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In particular, for n > 5, theset ~ is openand densein S:a Weylspinor in
a generalposition is not annihilatedby any non-zerovector.

Proof Part (ii) follows from Theorem4; to prove (i) and (iii), assumeX,~� 0,

so that Lemma5 and its Corollary can be appliedto give

dimX,~’= dimjt~(X,~)= dimI~ = dimQ~+ dim çp(T),

where T C Q~so that, accordingto Theorem2, one has dimç9(T) =
2nk1

for k = 1 n — 1 and dimq(T) = 1 for T C Qfl+ It now suffices to use
Lemma 4 to obtain the announceddimensions.

The classificationof spinorsaccordingto their nullity is coarsein the sense
that, with the exceptionof the orbits of pure spinorsX,~,anda few others,the
strata X~are collections of many orbits. This coarseclassificationhas been
presentedhere for arbitrary n, whereas the precise classification, along the
lines developedby Igusa,is limited to n < 8; in the wordsof Popov:“the case
we are investigatingis one of the last wherethe problemof classifyingspinors
has a reasonablemeaningandcan be conclusivelysolved” [Pp, p. 182]. It is
worth noting that thereare two ‘dimensional thresholds’in the studyof spinor
representations:the first occursat dimensionm = 6 of the underlyingvector
spaceW. For m > 6, the dimensionof the manifold of all mti subspacesof
W is smallerthan that of the (projective) spaceof spinors. The secondis at
m = 14: for m > 14, the dimensionof the spaceof spinorsis largerthan that
of the groupSP~flm.
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